

ELEMENTS POUR ETUDE DE PROJET

FTR01: ANCRAGE DES CONDUITES

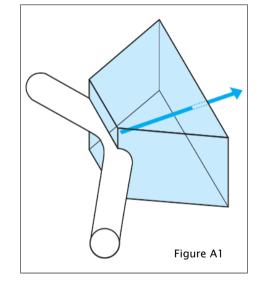
Les canalisations munies de jonctions flexibles de type automatique ou mécanique, réalisées en insérant des joints d'étanchéité dans une emboîture, requièrent un ancrage, en certains points caractéristiques, pour lutter contre la poussée créée par la pression intérieure qui a tendance à déplacer l'élément lui-même ou une solution de verrouillage à choisir au préalable parmi les solutions disponibles.

La poussée, qui doit être équilibrée par des forces extérieures (par ex. au moyen d'un ancrage), dépend de la pression intérieure de la conduite, de son diamètre et du type de point caractéristique.

La valeur de pression dont il faut tenir compte lors du dimensionnement des blocs d'ancrage ou du choix de la solution de verrouillage correspond à la valeur de pression d'essai sur chantier, puisqu'il s'agit de la pression maximum que la conduite doit supporter même dans des circonstances particulières.

Au prochain point FTR01-A, nous décrivons les solutions de verrouillage actuellement disponibles afin de faciliter le choix de la solution la plus adaptée en fonction des caractéristiques de la conduite et des sollicitations auxquelles elle doit résister. Nous fournissons également les indications nécessaires pour une utilisation correcte des composants de chaque solution et leur montage dans les règles de l'art.

Utilisation des blocs d'ancrage


L'ancrage, à savoir le bloc de contraste, est généralement fabriqué en béton; ses dimensions dépendent de la poussée contre laquelle il doit lutter, de la profondeur de pose de la canalisation et des caractéristiques géotechniques du terrain.

La forme idéale du bloc d'ancrage est celle d'une figure volumétrique d'une hauteur constante et à la base trapézoïdale (voir figure A1).

Dans la pratique cependant, souvent pour des raisons de simplicité, le bloc d'ancrage est réalisé en forme de parallélépipède.

Nous trouvons deux types de blocs d'ancrage :

- les blocs portants ;
- les blocs par gravité.

Les blocs d'ancrage portants sont utilisés lorsque le terrain est en mesure d'exercer une réaction latérale de contraste au moyen d'une poussée passive.

Les blocs d'ancrage par gravité sont, par contre, utilisés lorsque la réaction du terrain par poussée passive est tellement faible qu'elle doit être considérée nulle.

Dans ce dernier cas, la poussée due à la pression doit être neutralisée uniquement par frottement du poids du bloc d'ancrage et le terrain doit être en mesure de supporter la sollicitation unitaire qui en dérive.

FTR01-A Détermination des poussées au niveau des points caractéristiques

Les points caractéristiques devant être munis de bloc d'ancrage sont les :

· les déviations angulaires

- les coudes

- les points d'extrémités de conduite

· les brides pleines

- les vannes

- les embranchements, tés

· les variations de diamètre

- les réductions.

Les formules utilisées pour calculer la poussée sont respectivement:

Figure A2 Pointe d'extrémité : Figure A3 Embranchement:

$$P = p \frac{\pi}{4} De^2$$

Figure A4 Coude:

$$R = 2P \sin \frac{\alpha}{2}$$

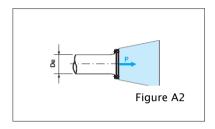
Figure A5 Variation de diamètre :

$$P = p \frac{\pi}{4} (De^2 - De'^2)$$

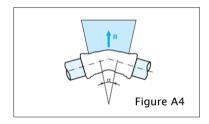
P: poussée, en kg

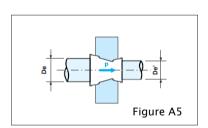
R : résultante de poussée, en kg

De : diamètre extérieur de la canalisation, en cm


De' : diamètre extérieur réduit de la canalisation, en cm

p: pression d'essai, en bars α: angle du raccord, en degrés


Ci-après, le tableau FTR01-A-1 reprend les valeurs des poussées, en fonction des diamètres et de chaque point caractéristique, calculées pour 1 bar de pression.


La valeur totale de la poussée P ou R, pour un diamètre donné et un point caractéristique spécifique, à la pression d'essai p, s'obtient en multipliant la valeur correspondante de la poussée indiquée dans le tableau par la valeur p de la pression d'essai examinée :

P = p · valeur correspondante du tableau

TABLEAU FTR01-A-1 POUSSÉES POUR 1 bar DE PRESSION (Pour DN > 800, nous consulter)

	dn	Réductions de diamètre	Extrémité ou embranchement	Coudes						
DN		Р	Р	11°15'	22°30'	2°30' 45°				
		kg	kg	R kg						
60			46	9	18	35	65			
80		29	75	15	29	57	106			
80	60	29	7.5	1.3	29	37	100			
100	00	63	109	21	43	83	154			
100	60	34	109	<u> </u>	7.7	0.5	1 7 7			
	80	77								
125		88	163	32	64	125	230			
123	80	54	103	32	0-1	123	230			
	100	3-1								
150	100	152	227	44	89	174	321			
	80	118				.,,				
	100	64								
	125	<u> </u>								
200	2	278	387	76	151	296	547			
	100	224								
	125	160								
	150									
250		426	589	116	230	451	832			
	125	362								
	150	202								
	200									
300		607	834	164	326	638	1 180			
	150	447								
	200	245								
	250									
350		734	1 121	220	438	857	1 585			
	200	532								
	250	287								
	300									
400		856	1 445	283	564	1 105	2 043			
	250	611								
	300	324								
	350									
450		974	1 808	355	706	1 383	2 556			
	300	687								
	350	363								
	400									
500		1 101	2 222	436	867	1 700	3 142			
	350	777								
	400	414								
	450									
600		1 720	3 165	621	1 236	2 421	4 475			
	400	1 357								
	450	943								
	500									
700		2 053	4 275	839	1 669	3 270	6 045			
	500	1 110								
	600									
800		2 400	5 565	1 092	2 173	4 257	7 869			
	600	1 290	;		1					

FTR01-B La réaction du terrain

Blocs d'ancrage portants

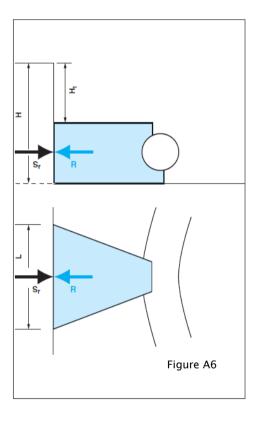
La réaction du terrain qui doit lutter contre la poussée exercée par la pression intérieure non équilibrée est confiée à la poussée passive du terrain, c'est-à-dire à la réaction latérale exercée par le terrain lorsqu'il est comprimé par une structure (Figure A6).

Si nous appliquons la théorie de Rankine, la poussée du terrain est calculée en utilisant la formule suivante :

 $\mathbf{S}_{r} = \ll_{\boldsymbol{\sigma}} \le (\mathbf{H}^{2} - \mathbf{H}_{1}^{2}) \mathbf{L} \mathbf{K}_{r} + 2 \mathbf{C} (\mathbf{H} - \mathbf{H}_{1}) \mathbf{L} (\mathbf{K}_{r})^{\ll_{\boldsymbol{\sigma}}}$

ΟÙ

Sr:	poussée de la terre, en kg
w:	poids spécifique du terrain, en kg/m³
H :	profondeur de pose surface de campagne/fond de l'excavation, en mètres
	profondeur entre la surface de campagne et la partie supérieure du bloc, en mètres
L:	largeur du bloc d'ancrage, en mètres
C :	cohésion du terrain, à savoir la résistance à la coupe du terrain, en kg/m²
Kr:	coefficient d'équilibre = tg^2 (45 + < p —2)
φ:	angle de frottement intérieur, à savoir l'angle d'équilibre interne de la terre, en degrés.


Blocs d'ancrage par gravité

Dans ce cas, la réaction du terrain est confiée au frottement terre/bloc et elle dépend donc du poids du bloc d'ancrage.

La réaction est calculée de la façon suivante :

ΟÙ

Rt:	réaction du terrain, en kg
Pp:	poids propre du bloc d'ancrage en kg
a :	coefficient de frottement = tg (0,9)

FTR01-C Conception des blocs d'ancrage

Blocs d'ancrage portants

Après avoir déterminé la poussée P ou R due à la pression intérieure et avoir supposé les dimensions du bloc d'ancrage, la vérification de sécurité impose :

$$P < (S_r + R_t) \frac{1}{s}$$

ΟÙ

P :	poussée, en kg
S _r :	poussée de la terre, en kg
R _t :	réaction du terrain, en kg
s:	coefficient de sécurité = 1,5

Le terrain réagit par le biais de la poussée de Rankine et de la réaction par frottement.

Blocs d'ancrage par gravité

Après avoir déterminé la poussée P ou R due à la pression intérieure et avoir supposé les dimensions du bloc d'ancrage, la vérification de sécurité impose :

$$P < R_t \cdot \frac{1}{s}$$

ΟÙ

L		poussée, en kg
		réaction du terrain, en kg
ĺ	s :	coefficient de sécurité = 1,5

Le terrain ne réagit que par frottement ; il faut en outre effectuer la vérification de sécurité liée à la résistance du terrain :

$$\sigma = \frac{P_p}{h_1 \cdot L} \left(1 + \frac{6 e}{h_1} \right) < \sigma_{amm}.$$

ΟÙ

O : sollicitation sur le terrain, en kg/cm2

h¹ : longueur du bloc, en cm

L : largeur du bloc, en cm

e : excentricité de la résultante des forces agissantes

ΟÙ

ΣM : somme des moments par rapport à l'axe médian du bloc

 $\sigma adm.$: sollicitation admissible du terrain pouvant être calculée à l'aide des

formules de géotechnique, en kg/cm²

Toute la section doit être sujette à compression (sollicitations uniquement positives), donc entièrement réactive.

En général, les tensions admissibles pour les différents terrains sont :

TYPE DE TERRAIN	σadm. TERRAIN				
TIPE DE TERRAIN	kg/cm2				
Terrains limoneux et argileux à haute teneur en eau	0,1				
Terrains cohésifs argileux, végétaux	0,5 ÷ 1				
Terrains argileux et sableux, compacts et durs	1,5 ÷ 2,5				
Terrains meubles, graveleux et caillouteux	3 ÷ 4				
Terrains stratifiés, roches tendres	5 ÷ 10				
Terrains massifs, roches dures et granits	>15				

Pour des calculs plus précis, utiliser les formules de géotechnique.

Afin de simplifier les opérations de vérification de sécurité concernant le dimensionnement des blocs d'ancrage portants, nous avons préparé les tableaux FTR1-C 1 à 3 qui indiquent, en fonction d'un type précis de terrain, des dimensions du bloc et de sa profondeur de pose, les valeurs de la réaction du terrain qui pourront ainsi être rapidement comparées à la poussée générée par la pression intérieure.

Les tableaux ont été réalisés sur la base des hypothèses suivantes :

- a) Dimensions proportionnées du bloc d'ancrage de façon à éviter l'apparition à l'intérieur de sollicitations incompatibles avec la résistance du béton
- b) Terrains présentant les caractéristiques géotechniques suivantes :

	TERRAIN ARGILEUX	TERRAIN SABLEUX	TERRAIN GRAVELEUX
φ	20°	30°	40°
С	500 kg/m ²	1 000 kg/m ²	0
Α	0,3	0,5	0,7
W	1 800 kg/m³	1 700 kg/m³	1 600 kg/m³
⁵amt	1 kg/m ²	2 kg/m²	4 kg/m²

c) Réaction du terrain dépendant des points a), b) et des profondeurs de pose les plus habituelles :

H = 0.50 m H = 2.00 m H = 1.00 m H = 2.50 mH = 1.50 m H = 3.00 m

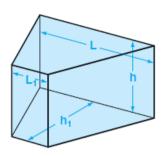
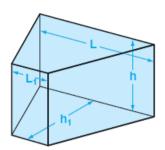


TABLEAU FTR01-C-1

TERRAIN TYPE A $\phi = 20^{\circ}$ C = 500 kg/m2 a = 0,30 w = 1 800 kg/m3

	Dimer	nsions		Volume	Poids	Surface	Réaction de contraste par frottement seulement	Poussée équilibrée par toutes les réactions de contraste kg					е
L ₁	L	h	h₁			Lxh				Profo	ndeur H		
m	m	m	m	m³	kg	cm²	kg	0,5 m	1,00 m	1,50 m	2,00 m	2,50 m	3,00 m
0,10	0,30	0,20	0,25	0,010	22	600	7	180	291	401	511	621	731
0,15	0,40	0,25	0,30	0,021	45	1 000	14	294	478	661	845	1 028	1 212
0,20	0,50	0,30	0,40	0,042	92	1 500	28	435	710	985	1 261	1 536	1 811
0,25	0,60	0,35	0,50	0,074	164	2 100	49		985	1 371	1 756	2 142	2 527
0,30	0,70	0,40	0,60	0,120	264	2 800	79		1 301	1 815	2 329	2 843	3 357
0,35	0,85	0,50	0,70	0,210	462	4 250	139		1 916	2 696	3 476	4 256	5 036
0,35	0,90	0,55	0,70	0,241	529	4 950	159		2 183	3 092	4 001	4 909	5 818
0,40	1,00	0,60	0,80	0,336	739	6 000	222		2 621	3 722	4 823	5 925	7 026
0,45	1,10	0,65	0,90	0,453	997	7 150	299		3 092	4 405	5 717	7 030	8 342
0,45	1,15	0,70	0,90	0,504	1 109	8 050	333		3 403	4 881	6 359	7 836	9 314
0,50	1,25	0,75	1,00	0,656	1 444	9 3 7 5	433		3 923	5 644	7 365	9 086	10 807
0,55	1,35	0,80	1,10	0,836	1 839	10 800	552		4 473	6 456	8 438	10 421	12 403
0,55	1,40	0,85	1,10	0,912	2 006	11 900	602			6 998	9 182	11 366	13 551
0,60	1,50	0,90	1,20	1,134	2 495	13 500	748			7 880	10 359	12 837	15 315
0,65	1,60	0,95	1,30	1,389	3 057	15 200	917			8 808	11 598	14 388	17 178
0,65	1,65	1,00	1,30	1,495	3 289	16 500	987			9 401	12 430	15 458	18 487
0,70	1,80	1,10	1,45	1,994	4 386	19 800	1 316			11 049	14 684	18 318	21 953
0,80	2,00	1,20	1,60	2,688	5 914	24 000	1 774			13 132	17 537	21 943	26 348
0,90	2,20	1,30	1,75	3,526	7 758	28 600	2 327			15 337	20 587	25 837	31 086
0,90	2,30	1,40	1,85	4,144	9 117	32 200	2 735			16 791	22 702	28 612	34 523
1,00	2,50	1,50	2,00	5,250	11 550	37 500	3 465			19 146	26 030	32 913	39 797
1,10	2,70	1,60	2,15	6,536	14 379	43 200	4 314				29 515	37 445	45 375
1,20	3,00	1,80	2,40	9,072	19 958	54 000	5 988				35 507	45 419	55 332
1,30	3,20	1,80	2,55	10,328	22 721	57 600	6 816				38 303	48 877	59 450
1,35	3,40	1,80	2,70	11,543	25 394	61 200	7 618				41 073	52 307	63 542
1,45	3,60	1,80	2,90	13,181	28 997	64 800	8 699				44 122	56 017	67 912
1,50	3,80	1,80	3,05	14,549	32 007	68 400	9 602				46 993	59 549	72 105
1,60	4,00	1,80	3,20	16,128	35 482	72 000	10 644				50 004	63 220	76 437
1,65	4,10	1,90	3,30	18,026	39 658	77 900	11 897					67 351	81 651
1,70	4,20	1,90	3,35	18,777	41 309	79 800	12 393					69 199	83 848
1,75	4,40	1,90	3,50	20,449	44 987	83 600	13 496					73 008	88 354


TABLEAU FTR01-C-2

TERRAIN TYPE B

 $\phi = 30^{\circ}$ C = 1 000 kg/m2

a = 0,50

w = 1700 kg/m

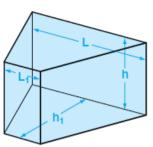

		nsions		Volume	Poids	Surface	Réaction de contraste par frottement seulement						aste
L ₁	L	h	h ₁	3		Lxh					ondeur I		
m	m	m	m	m³	kg	cm²	kg	0.5m	1.00m	1.50m	2.00m	2.50m	3.00m
0,10	0,30	0,20	0,25	0,010	22	600	11	341	494	647	800	953	1 106
0,15	0,40	0,25	0,30	0,021	45	1 000	23	560	815	1 070	1 325	1 580	1 835
0,20	0,50	0,30	0,40	0,042	92	1 500	46		1 216	1 599	1 981	2 364	2 746
0,25	0,60	0,35	0,50	0,074	164	2 100	82		1 693	2 228	2 764	3 299	3 835
0,30	0,70	0,40	0,60	0,120	264	2 800	132		2 244	2 958	3 672	4 386	5 100
0,35	0,85	0,50	0,70	0,210	462	4 250	231		3 329	4 413	5 496	6 580	7 664
0,35	0,90	0,55	0,70	0,241	529	4 950	265		3 810	2 072	6 334	7 596	8 859
0,40	1,00	0,60	0,80	0,336	739	6 000	370		4 590	6 120	7 650	9 180	10 710
0,45	1,10	0,65	0,90	0,453	997	7 150	499		5 437	7 260	9 083	10 907	12 730
0,45	1,15	0,70	0,90	0,504	1 109	8 050	554		6 012	8 064	10 117	12 170	14 223
0,50	1,25	0,75	1,00	0,656	1 444	9 375	722			9 348	11 739	14 130	16 520
0,55	1,35	0,80	1,10	0,836	1 839	10 800	920			10 720	13 474	16 228	18 982
0,55	1,40	0,85	1,10	0,912	2 006	11 900	1 003			11 649	14 684	17 718	20 753
0,60	1,50	0,90	1,20	1,134	2 495	13 500	1 247			13 153	16 595	20 038	23 481
0,65	1,60	0,95	1,30	1,389	3 057	15 200	1 528			14 740	18 616	22 492	26 368
0,65	1,65	1,00	1,30	1,495	3 289	16 500	1 645			15 775	19 983	24 190	28 398
0,70	1,80	1,10	1,45	1,994	4 386	19 800	2 193			18 645	23 694	28 743	33 792
0,80	2,00	1,20	1,60	2,688	5 914	24 000	2 957			22 287	28 407	34 527	406 647
0,90	2,20	1,30	1,75	3,526	7 758	28 600	3 879			26 184	33 477	40 770	48 063
0,90	2,30	1,40	1,85	4,144	9 117	32 200	4 558				37 061	45 272	53 483
1,00	2,50	1,50	2,00	5,250	11 550	37 500	5 775				42 672	52 234	61 797
1,10	2,70	1,60	2,15	6,536	14 379	43 200	7 190				48 593	59 609	70 625
1,20	3,00	1,80	2,40	9,072	19 958	54 000	9 979				58 979	72 749	86 519
1,30	3,20	1,80	2,55	10,328	22 721	57 600	11 360				63 627	78 315	93 003
1,35	3,40	1,80	2,70	11,543	25 394	61 200	12 697				68 230	83 836	99 442
1,45	3,60	1,80	2,90	13,181	28 997	64 800	14 499				73 299	89 823	106 347
1,50	3,80	1,80	3,05	14,549	32 007	68 400	16 003				78 070	95 512	112 954
1,60	4,00	1,80	3,20	16,128	35 482	72 000	17 741			<u> </u>	83 074	101 434	119 794
1,65	4,10	1,90	3,30	18,026	39 658	77 900	19 829					108 394	128 259
1,70	4,20	1,90	3,35	18,777	41 309	79 800	20 654			<u> </u>		111 380	131 729
1,75	4,40	1,90	3,50	20,449	44 987	83 600	22 494					117 539	138 857
1,85	4,60	1,90	3,70	22,672	49 878	87 400	24 939			<u> </u>		124 305	146 592
1,90	4,80	1,90	3,85	24,505	53 912	91 200	26 956					130 642	153 898
1,95	4,90	2,00	3,90	26,715	58 773	98 000	29 387			<u> </u>		138 305	163 295
2,00	5,00	2,00	4,00	28,000	61 600	100 000	30 800					141 941	167 441
2,10	5,20	2,00	4,15	30,295	66 649	104 000	33 325			<u> </u>		148 911	175 431
2,15	5,40	2,00	4,30	32,465	71 423	108 000	35 712					155 744	183 284
2,25	5,60	2,00	4,50	35,325	77 715	112 000	38 858			<u> </u>		163 335	191 895
2,30	5,80	2,00	4,65	37,665	82 863	116 000	41 432			<u> </u>		170 355	199 935
2,40	6,00	2,00	4,80	40,320	88 704	120 000	44 352					177 721	208 321

TABLEAU FTR01-C-3

TERRAIN TYPE C $\phi = 40^{\circ}$ C = 0 kg/m2 a = 0.70w = 1 600 kg/m3

	Dimer	nsions		Volume	Poids	Surface	Réaction de contraste par frottement seulement						ste
L ₁	L	h	h ₁			Lxh				Prof	ondeur H		
m	m	m	m	m ³	kg	cm ²	kg	0.5m	1.00m	1.50m	2.00m	2.50m	3.00m
0,10	0,30	0,20	0,25	0,010	22	600	15	192	413	633	854	1 075	1 296
0,15	0,40	0,25	0,30	0,021	45	1 000	32	308	676	1 044	1 411	1 779	2 147
0,20	0,50	0,30	0,40	0,042	92	1 500	65		1 003	1 555	2 107	2 658	3 210
0,25	0,60	0,35	0,50	0,074	164	2 100	115		1 389	2 162	2 935	3 707	4 480
0,30	0,70	0,40	0,60	0,120	264	2 800	185		1 833	2 863	3 893	4 924	5 954
0,35	0,85	0,50	0,70	0,210	462	4 250	323		2 669	4 232	5 796	7 360	8 923
0,35	0,90	0,55	0,70	0,241	529	4 950	371		3 011	4 832	6 654	8 475	10 296
0,40	1,00	0,60	0,80	0,336	739	6 000	517		3 608	5 815	8 023	10 230	12 438
0,45	1,10	0,65	0,90	0,453	997	7 150	698		4 249	6 880	9 511	12 141	14 772
0,45	1,15	0,70	0,90	0,504	1 109	8 050	776		4 626	7 588	10 550	13 511	16 473
0,50	1,25	0,75	1,00	0,656	1 444	9 375	1 011		5 322	8 771	12 220	15 670	19 119
0,55	1,35	0,80	1,10	0,836	1 839	10 800	1 287			10 029	14 002	17 976	21 949
0,55	1,40	0,85	1,10	0,912	2 006	11 900	1 404			10 817	15 195	19 573	23 951
0,60	1,50	0,90	1,20	1,134	2 495	13 500	1 746			12 177	17 143	22 110	27 077
0,65	1,60	0,95	1,30	1,389	3 057	15 200	2 140			13 604	19 196	24 788	30 381
0,65	1,65	1,00	1,30	1,495	3 289	16 500	2 302			14 443	20 514	26 584	32 655
0,70	1,80	1,10	1,45	1,994	4 386	19 800	3 070			16 911	24 196	31 481	38 765
0,80	2,00	1,20	1,60	2,688	5 914	24 000	4 140			20 033	28 863	37 693	46 523
0,90	2,20	1,30	1,75	3,526	7 758	28 600	5 430			23 318	33 841	44 363	54 885
0,90	2,30	1,40	1,85	4,144	9 117	32 200	6 382				37 183	49 030	60 877
1,00	2,50	1,50	2,00	5,250	11 550	37 500	8 085				42 577	56 373	70 170
1,10	2,70	1,60	2,15	6,536	14 379	43 200	10 065				48 211	64 104	79 998
1,20	3,00	1,80	2,40	9,072	19 958	54 000	13 971				57 679	77 546	97 413
1,30	3,20	1,80	2,55	10,328	22 721	57 600	15 904				62 526	83 718	104 910
1,35	3,40	1,80	2,70	11,543	25 394	61 200	17 775				67 311	89 827	112 344
1,45	3,60	1,80	2,90	13,181	28 997	64 800	20 298				72 748	96 588	120 429
1,50	3,80	1,80	3,05	14,549	32 007	68 400	22 405				77 768	102 933	128 098
1,60	4,00	1,80	3,20	16,128	35 482	72 000	24 837				83 114	109 604	136 094
1,65	4,10	1,90	3,30	18,026	39 658	77 900	27 760					116 607	145 268
1,70	4,20	1,90	3,35	18,777	41 309	79 800	28 916					119 930	149 290
1,75	4,40	1,90	3,50	20,449	44 987	83 600	31 491					126 839	157 597
1,85	4,60	1,90	3,70	22,672	49 878	87 400	34 914					134 597	166 752
1,90	4,80	1,90	3,85	24,505	53 912	91 200	37 738					141 754	175 308
1,95	4,90	2,00	3,90	26,715	58 773	98 000	41 141					149 307	185 363
2,00	5,00	2,00	4,00	28,000	61 600	100 000	43 120					153 494	190 285
2,10	5,20	2,00	4,15	30,295	66 649	104 000	46 654					161 443	199 706
2,15	5,40	2,00	4,30	32,465	71 423	108 000	49 996					169 200	208 934
2,25	5,60	2,00	4,50	35,325	77 715	112 000	54 401					178 019	219 225
2,30	5,80	2,00	4,65	37,665	82 863	116 000	58 004					186 037	228 715
2,40	6,00	2,00	4,80	40,320	88 704	120 000	62 093			<u> </u>		194 541	238 691

FTR01-D Procédé de calcul des blocs d'ancrage

À partir du tableau FTR01-A-1, nous obtenons la poussée P pour 1 bar en fonction du DN et du point caractéristique en question.

Nous déterminons la poussée en multipliant P (1 bar) par les bars de la pression d'essai.

Sécurité

Nous choisissons dans la série de tableaux FTR01-C-1 celui qui correspond au type de terrain où nous devons exécuter l'ancrage. Nous choisissons la profondeur de pose H immédiatement supérieure à celle correspondant à la pose de la canalisation Z puisque pour réaliser les configurations des fig. A1 et A6 à proximité du point caractéristique, il faut descendre à une profondeur supérieure à celle de pose de la conduite. Nous obtenons la valeur :

Cette valeur vérifie le bloc d'ancrage. Si nous ne trouvons pas la valeur au niveau de la profondeur H prise en considération :

il faut rechercher F dans le tableau de H immédiatement supérieure à celle déjà examinée, puisque cela signifie qu'à cette profondeur, le terrain n'offre pas un contraste suffisant et il faut donc descendre à une plus grande profondeur à proximité du raccord.

Dimensionnement du bloc d'ancrage, il faut le centrer par rapport à la canalisation pour éviter tout moment de basculement.

Deux situations types peuvent se produire :

a) Figure A7

Il faut augmenter H de la valeur obtenue avec la formule suivante :

$$\left(H-z+\frac{D}{2}\right)<\frac{h}{2}$$

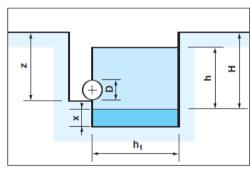


Figure A7

b) Figure A8

Il faut ajouter du béton au sommet de l'ancrage à concurrence de :

$$\left(H-z+\frac{D}{2}\right)>\frac{h}{2}$$

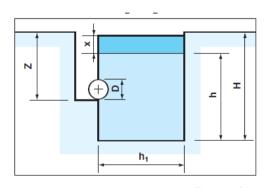


Figure A8

FTR01-E Conduites posées avec une forte déclivité

Lorsqu'une conduite est posée avec une forte déclivité, il existe une composante de force F qui tend à faire glisser les canalisations. Cette composante de force de glissement se calcule en utilisant la formule suivante :

 $F = P_t \text{ (sen } \alpha - a \cos \alpha)$

ΟÙ

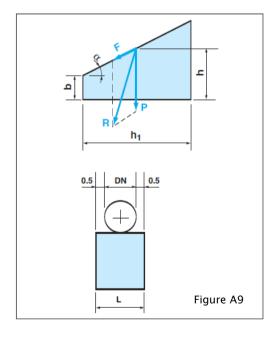
α:	angle d'inclinaison
Pt:	poids propre du tronçon de conduite et de l'eau contenue, en kg
F:	force de glissement, en kg
a :	coefficient de frottement terre/tuyau = α_2 tg (0,8 ϕ)
Où	
φ	= angle de frottement terrain
^α 2	= 1 tuyau revêtu Zn ou Zn-Al + peinture
α2	= 2/3 tuyau avec manchon en polyéthylène

Le poids du bloc d'ancrage est :

Il s'impose donc que la résultante R entre la force de glissement F et le poids P de l'ancrage passe par le tiers central de la base du bloc.

Les termes utilisés dans les formules sont ceux repris sur la figure A9

Nous pouvons obtenir les dimensions du bloc d'ancrage à l'aide des formules suivantes :


Il faut ensuite vérifier les conditions suivantes : non glissement du bloc :

Où Cs = coefficient de sécurité

Si le coefficient de sécurité est inférieur à la valeur souhaitée, augmenter les dimensions du bloc. Il faut aussi que la force maximum de glissement F ne dépasse pas la résistance en traction du joint

PFA = Pression de service admissible pour le joint verrouillé adopté S = section du tuyau = π (De/2)²

Exemple n°1

Données :

DN 300

Profondeur de pose z = 1,50 m

p = 25 bars

Coude à 45°

Terrain graveleux

Solution:

- 1) Dans le tableau 13.4.A au niveau du DN 300 et coude à 45°, nous voyons que la poussée p relative à 1 bar de pression est 638 kg.
- 2) La poussée totale R = R (1 bar) \cdot 25 = 15 950 kg
- 3) $R \cdot s = 15950 \cdot 1,5 = 23925 \text{ kg}$
- 4) Dans le tableau 13.4.B pour le terrain de type C, pour :

H = 2,00 m > de z = 1,50 m, nous obtenons:

 $F = S_1 + R_2 = 24 \cdot 196 \text{ kg} > \text{de R} \cdot \text{s} = 23 \cdot 925 \text{ kg}$

Par conséquent, les dimensions de l'ancrage sont :

 $L_1 = 0.70 \text{ m}$

L = 1,80 m

h = 1,10 m

 $h_1 = 1,45 \text{ m}$

- 5) Après avoir vérifié le bloc, aucun autre calcul n'est nécessaire.
- 6) Centrage du bloc :

Nous nous trouvons dans le cas b, il faut donc ajouter du béton au sommet de l'ancrage sur une hauteur de :

X = 2.0.65 - 1.10 = 20cm

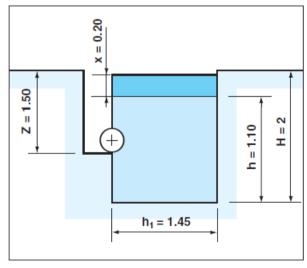


Figure A10

Exemple n°2

Données:

DN 300

Profondeur de pose z = 1,50 m

p = 25 bars

Coude à 45°

Terrain non portant avec :

w = 1 800 kg/m

 $^{\alpha}$ amt. = 4 kg/cm2

 $\phi = 40^{\circ}$

a = 0.7

Solution:

- 1) Tableau 13.4.A: au niveau du DN 300 et du coude à 45°, nous lisons R (1 bar) = 638 kg
- 2) Poussée R = R (1 bar) \cdot 25 = 638 \cdot 25 = 15 950 kg
- 3) $R \cdot s = 15950 \cdot 1,5 = 23925 \text{ kg}$
- 4) Bloc par gravité.
- 5) Dimensions du bloc comme indiqué en figure 13.4.11

$$Z = 1,5 \text{ m}$$

H = 2.5 m

H = 2.3 m

 $h_{.} = 1,15 \text{ m}$

L' = 1,6 m

 $h_1 = 4.5 \text{ m}$

Poids du bloc

$$P_0 = L \cdot h \cdot h_1 \cdot 2200 = 1,6 \cdot 2,3 \cdot 4,5 \cdot 2200 = 36432$$

6)
$$F = R = P \cdot a = 36 \ 432 \cdot 0.7 = 25 \ 502 \ kg$$

 $(F = 25 \ 502 \ kg) > (R \cdot s = 23 \ 925 \ kg)$

Ancrage vérifié

- 7) Bloc déjà centré.
- 8) Vérification de sécurité :

Toute la section est sujette à compression. En effet, il n'y a pas de tensions négatives, donc la section est entièrement réactive et vérifiée.

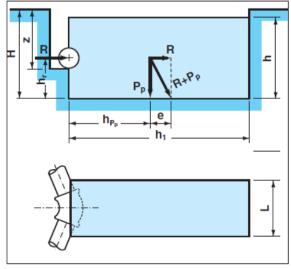


Figure A11

Head Office

Tata Metaliks Kubota Pipes Limited Tata Centre, 10 th Floor 43, Jawahrlal Nehru Road Kolkata: 700071 India Telephone: +91 33 6613 4205

Fax: +91 33 2288 4372

Website: www.tatametalikskubota.com

European Agency

Internet: www.w-t-s.ch

Water Technology Solution SA Route du Verney 18 CH - 1070 Puidoux Telephone: +41 32 435 1581 Fax: +41 32 435 1582 E-mail: w-t-s@w-t-s.ch

Marketing & Sales Office

Tata Metaliks Kubota Pipes Limited 6/1 A Middleton Street, 1st Floor Kolkata: 700071, India Telephone: +91 33 6459 1384 / 85 Fax: +91 33 2282 0781 / 2288 4372 E-mail: marketing@tatametalikskubota.com

L'ensemble des données reportées dans le présent document ne peut être pris comme indications contractuelles car il peut faire l'objet d'actualisations et modifications sans préavis

Edition 2017-01